دکتر توحید ملک زاده دیلمقانی

وب سایت رسمی
بایگانی

نگاهی به زلزله اهر

دوشنبه, ۱۹ بهمن ۱۳۹۴، ۱۰:۰۹ ب.ظ

دکتر توحید ملک زاده دیلمقانی

دکترای مهندسی ژئوفیزیک- استادیار دانشگاه

بزرگی زلزله هایی که عصر 21 مرداد 1391 منطقه مرکزی آذربایجان در اهر و ورزقان را تکان داد بر اساس اعلام موسسه زلزله شناسی آمریکا بیش از 4/6 درجه محاسبه گردیده که وقوع این زلزله باعث تلفات و تخریب زیادی در منطقه گردید.عمق کم وقوع زلزله یعنی  9/9 کیلومتری از سطح زمین نیز سبب افزایش تلفات  و تخریب در منطقه گردید. دو زمینلرزه پی در پی اولی در ساعت  ۱۶:۵۳با بزرگای  ۶.۲  در فاصله  ۲۳  کیلومتری غرب اهر  و دومی در ساعت  ۱۷:۰۴  با بزرگای  ۶.۱  در  ۳۰  کیلومتری اهر در حدود  ۵۰  کیلومتری شمال شرق  تبریز موجب خسارت و هراس مردم در پهنه رومرکزی  در استان آذربایجان شرقی شد. پس از این زلزله ها و تا سه ساعت و نیم بعد از لرزه دوم  ۱۷  پسلرزه با بزرگای بین۳  تا  ۵  در شبکه های لرزه نگاری در محدوده رو مرکزی - حدفاصل اهر و ورزقان - رخ داده است.  خسارتهای جانی اولیه تا ساعت 1 بامداد 22 مرداد 1391 به بیش از  200 نفر و خرابی در روستاهای منطقه اهر و ورزقان و همچنین خسارت و مجروح شدن بیش از  1300  نفر مردم در اهر و ورزقان و همچینین هریس و  استقرار در محدوده هوای باز در شهر های مذکور و همچنین شهر تبریز بوده است.

همچنین این زمینلرزه در شهرهای تبریز،اورمیه،مرند، بستان اباد، صومعه سرا، اردبیل، بوکان، آستارا، خوی، سلماس، پارس آباد مغان، شبستر، مشکین شهر، سلماس، رشت، مهاباد، بناب، ارومیه، ممقان، هادیشهر، بوکان، مراغه، میانه، میاندوآب احساس شده است.

با توجه به گزارشات رسیده شدت این زمینلرزه‌ها در محدوده رومرکز زمینلرزه حدود VIII  در مقیاس مرکالی اصلاح شده برآورد میگرد.

مطالعات مختلف ژئوفیزیکی در آذربایجان نشان می دهد که این منطقه از لحاظ زمین ساختی  یکی از مناطق بسیار جوان آسیاست و در کمربند زلزله موسوم به زلزله «آلپ – هیمالیا» قرار دارد. این کمربند زلزله خیز که از میان اقیانوس اطلس شروع می شود، پس از عبور از مناطق آلپ، ترکیه، آذربایجان، ایران، پاکستان، افغانستان، شمال هندوستان، تبت، منطقه جزایر فیلیپین می پیوندد و نوار عریضی را به وجود می‎آورد. در واقع میتوان این نوار را جزو مناطق بهم رسیده و جوش خورده صفحات در تئوری زمین ساخت صفحه ای دانست (فصل1). در سالهای اخیر کوششهایی برای حل مسائل لرزه زمین ساختی ایران و به تبع آن آذربایجان توسط نوروزی  (1972)، مکنزی (1977و1972) و Dewey et al (1973) ارائه گردید ولی این الگوها به سبب در نظر نگرفتن تکتونیک آذربایجان نتوانست پاسخگوی سئوالات لرزه زمین شناختی آذربایجان شود چرا که به قول بربریان (1362) بیشتر مرزهای بکار گرفته شده توسط نوروزی اساساً مرزهای غیر واقعی و جغرافیایی و سیاسی می باشند. با توجه به این مسائل و مشکلات و با عنایت به کوششهای افتخار نژاد ( 1960)، بربریان (1983)، بابا خانی و رحیم زاده (1367)، قنبری (1376و1363) و شنگور (1991) برای مطالعه تکتونیکی شرق آذربایجان و مطالعات مکنزی (1972)، دیوی (1973) اینوسنتی (1980)، فهمی (1365) و شئنگور (1990) برای غرب آذربایجان، موضوع سایزموتکتونیک و زلزله خیزی  اورمیه به تفضیل مورد بحث قرار گرفته است.

بررسی زلزله های تاریخی آذربایجان و همچنین زلزله های قرن جاری آذربایجان نشان میدهد که حرکات فیزیکی پوسته آذربایجان هنوز هم وجود دارد. مطالعات حرکات و ریزش کوهها در آذربایجان نیز نشان میدهد که حرکات خفیف زمین علاوه بر زلزله در ریزش و حتی شکاف کوههای منطقه نیز متجلی است . وجود تعداد بسیار زیاد آب گرم و معدنی در مناطق فعال تکتونیکی آذربایجان نظیر اردبیل، خلخال، سراب، بستان آباد، زنجان، خوی، سلماس، سراسکند، صایین قالا و غیره نشان دیگری از فعالیتهای تکتونیکی نوین در منطقه می باشد.

تمام این شواهد بیانگر این واقعیت است که جای جای آذربایجان همواره به طور بالقوه در معرض خطر تخریب و ویرانی مطلق می باشد و روزی فرا خواهد رسید که مناطق به اصطلاح آرام کنونی آذربایجان، حرکات مخرب زمین را تجربه خواهند کرد کما اینکه هر از چند گاهی شاهد این وقایع مخرب بوده ایم. متاسفانه اکثر مناطق پرجمعیت آذربایجان نظیر ورمیه در مناطق بسیار تکتونیکی بنا شده و در کنار گسل های فعال جوان توانمند قرار دارند. بنابراین آشنا کردن مردم این مناطق و حتی دیگر مردم مناطق در معرض کمتر با این خطر بالقوه و چگونگی مقابله با این بلای طبیعی چه از نظر مهندسی ساخت و ساز شامل ساختمان، لوله های نفت و گاز، بزرگراهها، شبکه های آب و فاضلاب، مخابرات و شبکه کابل های زیر زمینی، فرودگاهها، بنادر، شبکه راه آهن و چه از نظر بررسی نکات ایمنی و آموزشی همگانی زلزله برای کاستن میزان خسارات و تلفات یک وظیفه اساسی برای هر متخصص زلزله می باشد.

 در باب مطالعات زلزله شناسی گفتنی است گام اساسی و اولیه در این مورد این است که منابع لرزه زای منطقه و زلزله های تاریخی آن مورد مطالعه قرار گیرد. بر اساس اطلاعات دریافتی از این مطالعات اولیه ما می توانیم به صورت دقیقتر به مطالعات ریز پهنه بندی موردی سازه های مهندسی و کلیه مطالعات مهندسی و در نهایت ریز پهنه بندی شهر های آذربایجان پرداخت که از نظر ریسک زلزله دارای ریسک زیادی می باشند. ولی به راستی زلزله چیست؟

 

زلزله، لرزش و جنبش زمین است که به علّت آزاد شدن انرژی ناشی از گسیختگی سریع در گسلهای پوستهٔ زمین در مدّتی کوتاه روی می‌دهد. محلّی که منشأ زمین‌لرزه است و انرژی از آنجا خارج می‌شود را کانون  و نقطهٔ بالای کانون در سطح زمین را مرکز سطحی زمین‌لرزه گویند. پیش از وقوع زمین‌لرزهٔ اصلی معمولاً زلزله‌های نسبتاً خفیف‌تری در منطقه روی می‌دهد که به پیش‌لرزه معروفند. به لرزشهای بعدی زمین‌لرزه نیز پس‌لرزه گویند که با شدّت کمتر و با فاصلهٔ زمانی گوناگون میان چند دقیقه تا چند ماه رخ می‌دهند. زمین لرزه نتیجهٔ رهایی ناگهانی انرژی از داخل پوسته زمین است که امواج مرتعشی را ایجاد می‌کند. زلزله ها توسط دستگاه زلزله سنج یا لرزه نگار ثبت می‌شوند. مقدار بزرگی یک زلزله (ریشتر) طبق قرارداد گزارش می‌شود، زلزله‌های کوچکتر ازشدت  ۳  اغلب غیر محسوس و بزگتر از  ۷  خسارت‌های جدی را به بار می‌آورند. شدت لرزه با روش اصلاح شدهٔ مرکالی اندازگیری می‌شود. در نزدیکی سطح زمین، زلزله به صورت ارتعاش یا گاهی جابجایی زمین نمایان می‌شود. زمانی که مرکز زمین‌لرزه در داخل دریا باشد، بستر دریا به میزانی تغیر مکان می‌یابد که باعث ایجاد سونامی می‌شود. ارتعاشات زمین همین‌طورریزش کوه و گاهی فعالیت‌ها ی آتشفشانی را موجب می‌شود. درحالت کلی کلمه زمین لرزه هر نوع ارتعاشی را در بر می‌گیرد – چه ارتعاش طبیعی چه مصنوعی توسط انسان - که موجب ایجاد امواج مرتعش می‌شود. زمین لرزه‌ها اغلب معلول شکستگی‌های گسل‌ها هستند، و همین‌طور فعالیت‌های آتشفشانی، ریزش کوه‌ها، انفجار معدن‌ها، و آزمایشات هسته‌ای. نقطهٔ آغازین شکاف لرزه را کانون می‌نامند. مرکز زمین‌لرزه نقطه‌ای است در راستای عمودی کانون و در سطح زمین.

زلزله‌های طبیعی

 

زلزله‌ها در هر جای زمین که در آن به میزان کافی انرژی کشسانی ذخیره شده باشد، در امتداد صفحهٔ گسل و شکستگی رخ خواهند داد. در مرزهای صفحه‌های تبدیل و یا همگرا، که بزرگترین صفحه‌های گسل روی زمین را ایجاد می‌کنند، صفحات کنار یکدیگر حرکت یکنواخت خواهند داشت اگرهیچ بی نظمی یا ناهمواری در امتداد مرزهای آنها که باعث افزایش مقاومت اصطکاکی می‌شود، وجود نداشته باشد. اکثر مرزها دارای این ناهمواری‌ها هستند و این منجر به یک شکل از رفتار لغزشی می‌شود. هنگامی که مرزهای صفحه قفل شده باشد، ادامهٔ حرکت نسبی بین صفحات منجر به افزایش تنش و در نتیجه افزایش انرژی ذخیره شده در حجم اطراف سطح گسل می‌شود. این افزایش ادامه می‌یابد تا زمانی که تنش افزایش یافته به اندازه‌ای کافی برسد و از طریق شکستن ناهمواری‌ها، ناگهان از بخش قفل شدهٔ گسل اجازه لغزش بیابد و انرژی ذخیره شده را آزاد کند. این انرژی به عنوان ترکیبی از کرنش الاستیک امواج لرزه‌ای آزاد شده وتابیده شده، گرمای اصطکاکی سطح گسل، و شکستن سنگ، که در نتیجه باعث ایجاد زلزله می‌شود. این روند تدریجی ساخت تنش و کرنش که موجب شکست ناگهانی وتولید زلزله‌است به عنوان تئوری الاستیک واکنش خوانده می‌شود. تخمین زده می‌شود که تنها  ۱۰  درصد یا کمتر از کل انرژی زلزله به صورت انرژی لرزه‌ای تابیده می‌شود. بیشتر انرژی زلزله صرف رشد شکستگی یا تبدیل به حرارت تولید شده توسط اصطکاک می‌شود. بنابراین، زمین لرزه انرژی پتانسیل کشسانی زمین را کاهش می‌دهد و درجه حرارت آن را افزایش می‌دهد، اگرچه این تغییرات نسبت به جریان همرفت و رسانایی گرمای خارج از اعماق زمین ناچیزاست. منبع انرپی زلزله گسل نامیده می شود.

انواع گسل زلزله

 

سه نوع عمده از گسل وجود دارد که ممکن است موجب زلزله بشوند: عادی، معکوس (محوری) و ضربه ای- لغزشی. گسل‌های نرمال و معکوس نمونه‌هایی از شیب - لغزش هستند، که در آن جابه جایی در امتداد گسل در جهت شیب و حرکت بر روی آنها شامل مؤلّفهٔ عمودی می‌شود. گسل نرمال عمدتاً در حوزه‌هایی رخ می‌دهد که پوسته مانند مرز واگرا در حال تمدید شدن است. گسل معکوس در مناطقی که پوسته مانند مرز همگرا در حال کوتاه شدن است رخ می‌دهد. گسل‌ها ی ضربه‌ای - لغزشی ساختمان‌های شیب داری دارند که دو طرف گسل به صورت افقی در کنار یکدیگر می‌لغزند؛ مرزهای تبدیلی نوع خاصی از گسل ضربه‌ای – لغزشی هستند. زلزله‌های بسیاری ناشی از جنبش در گسل‌ها یی هستند که شامل هر دو نوع شیب - لغزش و ضربه ای- لغزشی است، این لغزش به عنوان مورب شناخته شده‌است.

اکثر زلزله تکتونیکی درعمقی کمتراز ده‌ها کیلومتر ناشی می‌شوند. زلزله‌های درعمق کمتر از  ۷۰  کیلومتر به عنوان زمین لرزه‌ها ی کانون-کم عمق طبقه بندی می‌شوند، در حالی که با فاصله کانونی بین  ۷۰  و  ۳۰۰  کیلومتر معمولاً 'کانون-میانی ' یا 'زلزله متوسط عمق' نامیده می‌شوند. در مناطق فرورانش، جایی که پوسته اقیانوسی مسن تر و سردتر در بشقاب تکتونیکی دیگر می‌رود، زلزله‌ها ممکن است در عمق بسیار بیشتری (در محدوده  ۳۰۰  تا  ۷۰۰  کیلومتر) رخ دهند. این نواحی مرتعش فعال همراه با فرورانش شناخته شده‌است. کانون-عمیق زلزله‌ها در عمق زیاد می‌باشند که در آن ناحیه، سنگ کره با توجه به درجه حرارت بالا و فشار دیگر شکننده نیست. مکانیسم احتمالی برای نسل کانون-عمیق زلزله‌ها ناشی از الوین تحت تغییر فاز به ساختارصلبی است.

زلزله‌ها و فعالیت‌های آتشفشانی

 

بعضی از زلزله‌ها در مناطق آتشفشانی رخ می‌دهند، آنها توسط حرکت ماگما در آتشفشان‌ها ایجاد می‌شوند. چنین زلزله‌هایی می‌توانند به عنوان هشدار دهنده‌ای زود هنگام فوران آتشفشانی را خبر دهند، مانند زلزله‌ها در طول فوران کوه سنت هلن در  ۱۹۸۰. زیاد شدن زلزله‌ها در اطراف یک آتشفشان فعّال می‌تواند به عنوان نشانه‌ای برای قریب‌الوقوع بودن فعالیت آتشفشانی باشد. زیاد شدن فعالیت لرزه‌ای قبل از فوران یک آتشفشان می‌تواند توسط زلزله نگارها و دستگاه‌های شیب‌سنج (tiltimeters  )ثبت شوند.

خوشه‌های زلزله

 

بیشتر زمین لرزه‌ها از لحاظ مکان و زمان به یکدیگر مربوط هستند. بیشتر خوشه‌های زلزله شامل لرزش‌های کوچکی هستند که یا به میزان کم خسارت وارد می‌کند یا خسارتی ندارد، اما تئوری وجود دارد که زلزله می‌تواند در یک الگوی منظم تکرار شود.

پس لرزه

پس لرزه زلزله‌ای است که پس از زلزله اصلی، (mainshock) رخ می‌دهد. پس لرزه در منطقه همان شوک اصلی است، اما همیشه ازلحاظ قدرت کوچکتر است. اگر پس لرزه بزرگ تر از شوک اصلی باشد، پس لرزه به عنوان شوک اصلی و شوک اولیه اصلی به عنوان foreshock  نام گذاری می‌شود. پس لرزه‌ها زمانی به وجود می‌آیند که پوسته در اطراف صفحه گسل جا به جا شده با اثرات شوک اصلی تطبیق داده می‌شود.

ازدحام زلزله‌ها

ازدحام زلزله، سلسله‌ای از زمین لرزه هاست که در منطقه‌ای خاص در مدت زمان کوتاهی اتفاق می‌افتند. آنها با زلزله‌هایی که به دنبال آن‌ها مجموعه‌ای از پس لرزه هاست متفاوتند با توجه به این واقعیت که هیچ‌کدام ازتک زمین لرزه‌ها در دنباله شوک اصلی نیست، بنابراین هیچ‌یک از قدرت قابل توجهی بالاتر از دیگران ندارد.

طوفان زلزله

گاهی اوقات یک سری از زمین لرزه‌ها به صورت طوفان زلزله رخ می‌دهد، که در آن زلزله به گسل پرخوشه ضربه می‌زند، که باعث لرزش و یا توزیع مجدّد تنش از زلزله قبلی ارسال شده، می‌شود. مشابه پس لرزه‌ها اما در بخشهای مجاور گسل، این طوفان‌ها طی سالیان اتفاق می‌افتد، همراه با برخی زلزله‌ها یی که به اندازهٔ زلزله‌های اولیه مخربند. چنین الگویی در دنبالهٔ زلزله‌ها در گسل شمال آناتولی در ترکیه در قرن  ۲۰  مشاهده شد و برای خوشه‌های غیرعادی قدیمی از زلزله بزرگ در خاور میانه استنباط شد.

حجم و تعداد دفعات وقوع

حدود  ۵۰۰،۰۰۰  زمین لرزه در هر سال وجود دارد که از این تعداد  ۱۰۰،۰۰۰  تا می‌تواند احساس می‌شود. زمین لرزهٔ کوچک به طور مداوم در سراسر جهان در مناطقی مانند کالیفرنیا و آلاسکا، ایالات متحده همچنین در گواتمالا، شیلی، پرو، اندونزی، ایران، پاکستان، آزورس در پرتغال، ترکیه، نیوزیلند، یونان، ایتالیا و ژاپن رخ می‌دهد، اما زلزله می‌تواند، تقریباً در هر نقطه‌ای رخ دهد، از جمله نیویورک، لندن و استرالیا. زمین لرزهٔ بزرگتر کمتر اتفاق می‌افتد، رابطه به صورت نمایی است؛ برای مثال، تقریباً ده برابراز زلزله‌ها ی بزرگتر از شدت  ۴  در یک دوره زمانی خاص نسبت به زلزله‌ها ی بزرگتر از شدت  ۵  رخ می‌دهد. در(لرزه خیزی کم) انگلستان، به عنوان مثال، محاسبه شده‌است که عود به طور متوسط عبارتند از: زلزله  ۳٫۷  -- ۴٫۶  در هر سال، زلزله  ۴٫۷  -- ۵٫۵  هر  ۱۰  سال، و زلزله  ۵٫۶  یا بالاتر در هر  ۱۰۰  سال است. این نمونه‌ای از قانون گوتنبرگ- ریشتر است. تعداد ایستگاه‌های لرزه‌ای از حدود  ۳۵۰  در سال  ۱۹۳۱  امروزه به هزارها از افزایش یافته‌است. نتیجتا، تعداد بیشتری زمین لرزه نسبت به گذشته منتشرمی شود، اما این به دلیل بهبود ابزار اندازه گیری است نه به دلیل افزایش تعداد زمین لرزه‌ها. USGS  تخمین می‌زند که از سال  ۱۹۰۰  تا به حال به طور متوسط  ۱۸  زلزله بزرگ (قدر  ۷٫۰-۷٫۹) و یک زلزله خیلی بزرگ (قدر  ۸٫۰  و یا بیشتر) در هر سال وجود داشته‌است، و این نسبت تقریباً ثابت بوده‌است. در سال‌های اخیر، تعداد زمین لرزه‌های بزرگ در هر سال کاهش یافته‌است، اگرچه این نتیجهٔ نوسانات آماری است، نه از روند سیستماتیک. آمار دقیق بیشتر در اندازه و تعداد زلزله‌ها، از USGS  در دسترس است. بسیاری از زمین لرزه‌های جهان  (۹۰  ٪ و  ۸۱  ٪ از بزرگترین) در طول  ۰۰۰،۴۰  کیلومتر، منطقه نعل اسبی شکل به نام کمربند زمین لرزه سیرکم پاسیفیک(circum-Pacific seismic belt)، که همچنین به عنوان زنگ آتش اقیانوس آرام شناخته شده، اتفاق می‌افتند. که در اکثرنفاط با صفحهٔ اقیانوس آرام هم مرز است. زلزله‌های بزرگ تمایل دارند در طول مرز صفحه‌های دیگر نیز رخ دهند: مثلاً در امتداد کوه‌های هیمالیا. با رشد سریع شهرهای بزرگ مانند مکزیکوسیتی، توکیو و تهران، در مناطق پر خطر زمین لرزه، برخی از زلزله شناسان هشدار می‌دهند که ممکن است زلزله زندگی تا حداکثر  ۳  میلیون نفر را بگیرد.

زه‌خیزی القا شده

 

در حالی که اکثر زمین‌لرزه‌ها توسط حرکت صفحات تکتونیکی زمین ایجاد می‌شود، فعالیت‌های انسانی نیز می‌تواند زمین‌لرزه تولید کند. چهار گونه فعالیت‌های اصلی در این پدیده مشارکت می‌کنند: احداث سدها و ساختمان‌های بزرگ، حفاری و تزریق مایع به داخل چاه، استخراج از معادن زغال سنگ، و استخراج نفت.

شاید بهترین نمونه شناخته شده زمین‌لرزه سال  ۲۰۰۸  در استان سیچوان چین است، این لرزش منجر به  ۲۲۷۶۹٬  نفر تلفات شد و نوزدهمین زمین‌لرزه مرگبار در تمام دوران‌ها بوده‌است. باور بر این است که سد زیپینگو (Zipingpu)، زیر فشار گسل  ۱۶۵۰  فوت  (۵۰۳  متر) نوسان یافته؛ این فشار احتمالاً قدرت زمین‌لرزه را افزایش داده و سرعت حرکت گسل را شتاب بخشیده‌است. همچنین بزرگترین زمین لرزه‌ای که در تاریخ استرالیا روی داد، توسط بشر القا شده بود؛ از طریق استخراج از معادن زغال سنگ. شهر نیوکاسل بر بخش بزرگی از مناطق استخراج معادن زغال سنگ ساخته شده بود. زلزله از گسلی که به خاطر استخراج میلیون‌ها تن سنگ معدن ایجاد شده بود، تولید شد.

در سال  ۲۰۱۱  میلادی، وقوع تعداد  ۱۱  زمین‌لرزه نامعمول در شهر یانگ استون در ایالت اوهایوی آمریکا باعث شد که پژوهشگران به این نتیجه برسند که فعالیت‌های اکتشاف گاز و تزریق مایع به درون لایه‌های زمین در آن منطقه باعث فشار بر لایه‌ها و عامل بروز زمین‌لرزه شده‌اند.

اندازه گیری شدت و محل زلزله

زلزله را می‌توان توسط لرزه نگار(seismometers) تا فواصل بسیار بزرگ ثبت کرد، چرا که امواج لرزه‌ای حتی از داخل زمین هم عبور می‌کنند. قدر مطلق اندازهٔ زلزله مطابق قرارداد توسط اعداد در مقیاس قدر گشتاور (که قبلاً در مقیاس ریشتر، از قدر  ۷  باعث آسیب جدی و بزرگ بیشتر مناطق گزارش شده)، در حالی که احساس قدر با استفاده از مقیاس مرکالی گزارش می‌شود. هر لرزش انواع امواج لرزه‌ای را تولید می‌کند که با سرعت‌های مختلف ازداخل سنگ عبور می‌کنند: امواج طولی P  (امواج ضربه‌ای یا فشاری) امواج عرضی S  (هر دو امواج بدن) و امواج سطحی مختلف (امواج ریلی). سرعت انتشار امواج لرزه‌ای حاصل از محدوده تقریبی  ۳  کیلومتر بر ثانیه تا  ۱۳  کیلومتر بر ثانیه، بسته به تراکم و کشش از مقدار میانه تغییر می‌کند. در داخل کره زمین امواج ضربه‌ای یا P  بسیار سریعتر از امواج S  حرکت می‌کنند. (تقریباً  ۱٫۷: ۱). تفاوت در زمان سفرامواج از کانون به رصدخانه برای اندازه گیری فاصله‌است و می‌تواند منابع لرزه و ساختار درون زمین را نشان دهد. همچنین عمق کانون hypocenter  را می‌توان به طور تقریبی محاسبه کرد. قانون کلی: به طور متوسط، فاصله (کیلومتر) به زلزله برابر است با زمان(ثانیه) بین امواج P  و S. انحراف خفیف به دلیل ناهمگن بودن لایه‌های زیرسطحی زمین است.

آثار زمین لرزه

برخی از آثار زلزله به شرح زیر است:

لرزاندن و گسیختگی زمین

 

لرزاندن و گسیختگی زمین اثرات اصلی ایجاد شده توسط زمین لرزه هستند، اساساً منجر به آسیب زیاد یا کم ساختمان‌ها و دیگر سازه‌های سفت و سخت می‌شود. شدت عوارض بستگی به ترکیب پیچیدهٔ بزرگی زلزله، فاصله از مرکز زلزله، شرایط زمین‌شناسی و geomorpholical  محل دارد که باعث تقویت یا کاهش انتشار امواج می‌شود. تکان زمین را با شتاب زمین اندازه گیری می‌کنند. ویژگی‌های خاص زمین‌شناسی، geomorphological  و geostructural  محل می‌توانند میزان لرزش زمین را حتی در زلزله‌ها ی کم شدت افزایش دهند. این اثر، سایت یا تقویت محلی نامیده شده‌است. اصولاً به دلیل انتقال حرکت لرزه‌ای از خاک سخت به خاک سطحی نرم، تمرکز و ذخیرهٔ انرژی لرزه‌ای در کانون به علت نوعی تنظیم هندسی می‌باشد. گسیختگی زمین در واقع شکستن آشکار و جابه جایی سطح کره زمین در طول گسل است که ممکن است در مورد زلزله بزرگ مترها باشد. گسیختگی زمین خطر بزرگی برای سازه‌های مهندسی بزرگ مانند سدها، پل‌ها و ایستگاه‌های قدرت هسته‌ای است در نتیجه نیاز به نقشه برداری دقیق از گسل‌های موجود برای شناسایی هر گونه احتمال شکستن سطح زمین در طول مدت عمر سازه وجود دارد.

رانش زمین و بهمن

زلزله، همراه با طوفان شدید، فعالیت آتشفشانی، برخورد موج ساحلی، و آتش سوزی بزرگ، می‌تواند منجر به عدم ثبات شیب زمین وخطر بزرگی در زمین‌شناسی شود. خطر زمین لغزش حتی ممکن است در حالی که پرسنل اورژانس اقدام به نجاتت می‌کنند باقی بماند.

آتش سوزی

زلزله می‌تواند با صدمه زدن به قدرت برق یا خطوط گازمنجر به آتش سوزی شود. در صورت صدمه به شبکه آبرسانی و از دست دادن فشار، جلوگیری از گسترش آتش نیز ممکن است مشکل شود. برای مثال، مرگ و میر در زلزله  ۱۹۰۶  سان فرانسیسکو بیشتر توسط آتش سوزی بود تا از زلزله.

روانگرایی خاک

روانگرایی خاک یا شبیه به مایع عملکردن خاک وقتی رخ می‌دهد که، به خاطر تکانها، دانه‌های مواد اشباع شده با آب (مانند شن و ماسه) به طور موقت استحکام خود را از دست داده و از شکل جامد به حالت روان تبدیل شوند. روانگرایی خاک می‌تواند ساختارهای سفت و سخت، مانند ساختمان‌ها و پل‌ها را، کج کند یا به ساختارهای فرورونده تبدیل کند. برای مثال، در زلزله  ۱۹۶۴  آلاسکا، روانگرایی خاک باعث شد ساختمان‌های بسیاری در زمین فروروند و در نهایت به روی خود فروبریزند.

تسونامی

تسونامی، موجهایی با طول بلند، امواج طولانی مدت دریا هستند که توسط حرکت ناگهانی حجم زیادی از آب تولید می‌شوند. در اقیانوس فاصله بین فاکتورهای اوج موج می‌تواند  ۱۰۰  کیلومتر فراتر، و دوره‌های موج می‌تواند از پنج دفیفه تا یک ساعت متفاوت باشد. چنین تسونامی، ۶۰۰-۸۰۰  کیلومتر در ساعت، بسته به عمق آب حرکت می‌کند. امواج بزرگ تولید شده توسط زلزله یا زمین لغزش زیر دریایی می‌تواند در نزدیکی مناطق ساحلی در عرض چند دقیقه تاخت و تاز کند. سونامی همچنین می‌تواند هزاران کیلومتر در سراسر اقیانوس حرکت کند و ساعتها بعد از زلزله‌ای که آن را تولید کرده، سواحل دور را تخریب کند. در حالت عادی، زلزله فرورانش کمتر از قدر  ۷٫۵  در مقیاس ریشتر سونامی ایجاد نمی‌کند، هر چند برخی از این موارد ثبت شده‌است. بیشتر سونامی‌های مخرب توسط زمین لرزه با بیشتر از بزرگی  ۷٫۵  ریشتر ایجاد می‌شود.

سیل

سیل سرریزشدن هر مقدار آب است که به زمین می‌رسد. سیل معمولاً هنگامی رخ می‌دهد که حجم آب داخل بستر، مثلاً رودخانه و یا دریاچه، بیش از ظرفیت کل آن شود، و در نتیجه مقداری آب جاری شود و در خارج از محیط طبیعی بستر قرار بگیرد. با این حال، اگر سد آسیب ببیند سیل اثرات ثانویهٔ زلزله‌است. زلزله ممکن است موجب ریزش خاک کوه شود و جریان رودخانه را مسدود کند که علت سیل شود. زمین در زیر دریاچه Sarez  در تاجیکستان در معرض خطر سیل عظیمی است اگر سد ناشی از ریزش تشکیل شده توسط زلزله، معروف به سد Usoi  به هنگام زمین لرزه‌های آینده شکسته شود. پیش بینی می‌شود سیل می‌تواند بر زندگی حدود  ۵  میلیون نفر تاثیر بگذارد.

نیروهای جزر

 

تحقیقات نشان داده‌است ارتباط قوی بین نیروهای کشندی(جزرومدی) کوچک و لرزشهای غیرآتشفشانی وجود دارد.

اثرات بشر

زلزله ممکن است منجر به بیماری، فقدان نیازهای اساسی، از دست دادن زندگی، حق بیمه بالاتر، صدمه به اموال عمومی، آسیب جاده و پل و فروپاشی(یا منجر به سقوط در آینده) ساختمانها شود. زلزله همچنین می‌توانید فوران‌های آتشفشانی، که سبب بروز مشکلات آتی هستند را ایجاد کند؛ به عنوان مثال، صدمه قابل توجه به محصولات، همان‌طور که در سال معروف به «بدون تابستان» (۱۸۱۶) اتفاق افتاد.

زمین لرزه‌های ثبت شده بر پایه ی بزرگی

رتبه        تاریخ                              محل       بزرگی    

۱          ۲۲  مه  ۱۹۶۰       والدیویا - شیلی        ۹٫۵      

۲          ۲۷  مارس  ۱۹۶۴   آلاسکا - ایالات متحده آمریکا     ۹٫۲      

۳          ۲۶  دسامبر  ۲۰۰۴  سوماترا - اندونزی    ۹٫۱      

۴          ۴  نوامبر  ۱۹۵۲    کامچاتکا - روسیه     ۹٫۰      

۵          ۱۱  مارس  ۲۰۱۱   توهوکو - ژاپن        ۹٫۰      

 

آمادگی در برابر زلزله

 

به منظور تعیین احتمال فعالیت‌های لرزه نگاری آینده، زمین شناسان و دانشمندان سنگهای منطقه را بررسی می‌کنند تا تعیین کنند اگر سنگها به نظر «فشرده» می‌رسد. مطالعهٔ گسلهای یک منطقه به مطالعهٔ زمان سپری شده برای تشکیل فشار کافی برای وقوع زلزله توسط گسل نیز به عنوان یک تکنیک پیش بینی، کمک می‌کند. اندازه گیری‌ها بر اساس میزان انرژی کرنش انباشته در گسل در هر سال، زمان سپری شده از آخرین زلزله بزرگ، و انرژی و قدرت آخرین زلزله بنا می‌شوند. تمام این حقایق به دانشمندان اجازه می‌دهد میزان فشار لازم برای ایجاد گسل زلزله را تعیین کنند. اگرچه این روش بسیار مفید است، آن را تا به حال تنها در گسل سان آندریاس کالیفرنیا اجرا کرده‌اند. امروزه راه‌هایی برای محافظت و آماده سازی محل‌های احتمالی زمین لرزه از آسیب شدید وجود دارد که از طریق فرایندهای زیر است: مهندسی زلزله، آمادگی دربرابر زلزله، ایمنی لرزه‌ای خانواده، دایر کردن تجهیزات لرزه‌ای (از جمله اتصالات، مواد و روش‌ها ی خاص)، خطر زلزله، کاهش حرکت زمین لرزه، و پیش بینی زلزله. مقاوم سازی لرزه‌ای این است که ساختارهای موجود را نسبت به فعالیت‌های زمین لرزه، حرکت زمین یا شکست خاک ناشی از زلزله مقاوم تر و بهتر کند. با درک بهتر از تقاضا لرزه‌ای در سازه‌ها و با تجربه‌های اخیر زمین لرزه‌های بزرگ در نزدیکی مراکز شهری، نیاز به مقاوم سازی لرزه‌ای هرچه بیشتر است. قبل از معرفی کدهای مدرن لرزه در اواخر  ۱۹۶۰  برای کشورهای توسعه یافته (آمریکا، ژاپن و …) و در اواخر  ۱۹۷۰  برای بسیاری از دیگر نقاط جهان (ترکیه، چین و …)، سازه‌های بسیاری بدون جزئیات کافی برای محافظت و تقویت لرزه‌ای طراحی شده بودند. با در نظر گرفتن مشکل قریب الوقوع، کارهای تحقیقاتی مختلفی انجام گرفت. علاوه بر این، دستورالعمل‌های فنی برای ارزیابی لرزه‌ای، در سراسر جهان ایجاد و بازسازی شده‌اند و به چاپ رسیده اند-- مانند ASCE - SEI   و دستورالعمل انجمن مهندسی زلزله نیوزیلند (NZSEE).

بزرگی زمین‌لرزه

 

بزرگی زمین‌لرزه را به صورت زیر تعریف می‌کنند:

 

بزرگی زلزله، M  برابر لگاریتم در پایه ده دامنه حداکثر (برحسب میکرون) حرکت، A، است که توسط لرزه‌سنج استاندارد ووداندرسون در فاصله صد کیلومتری از مرکز زلزله ثبت شده باشد.

M = Log(۱۰) A

 

همچنین، جهت تعیین انرژی آزاد شده توسط هر زلزله رابطه‌ای توسط ریشتر – گوتنبرگ در سال  ۱۹۵۶  ارائه گردید که میزان انرژی آزاد شده در کانون زلزله بر حسب ارگ (erg) و بزرگی آن "M" مشخص می‌نماید.

Log E =۱۱٫۴ + ۱٫۵ M

 

با یک محاسبه ساده می‌توان نشان داد که با افزایش یک درجه‌ای اندازه بزرگی زلزله، مقدار انرژی آزاد شده تقریباً  ۳۲  برابر می‌گردد. برای مقایسه بد نیست بدانیم که انرژی بمب اتمی که هیروشیما را در پایان جنگ جهانی دوم ویران کرد معادل انرژی یک زمین لرزه ۵ ریشتری بوده است .

ثبت زلزله‌ها

 

به منظور ثبت زلزله‌ها از دستگاهی به نام لرزه سنج یا شتاب نگار استفاده می‌شود. داده‌های به دست آمده از این دستگاه یا به صورت یک سری از اعداد بیانگر شتاب است که به صورت (شتاب - زمان) دسته بندی شده‌اند و یا صرفاً یک سری اعداد بیانگر شتاب زمین است. در این مورد اخیر در ابتدای داده‌ها اشاره می‌گردد که فاصله زمانی این داده‌ها چند ثانیه‌است. داده‌های زلزله‌های ایران از سایت مرکز تحقیقات ساختمان و مسکن قابل دریافت است.

به‌راستی چه باید کرد؟ برای کاستن از خسارت‌های مادی و معنوی و پیامدهای ناگوار زمین‌لرزه چه باید کرد؟ در پاسخ باید گفت، باید از دیگران آموخت. باید سازمانی برای مدیریت بحران به وجود آورد؛ قانون وضع کرد؛ بودجه اختصاص داد؛ دستورها را اجرا کرد، مسوولیت‌ها را تقسیم کرد؛ متعهد شد؛ جریمه و مجازات کرد؛ هشدار داد و آگاه کرد. باید:

1. از تجربه‌ها و دستاوردهای کشورهایی که توانسته‌اند از شدت پیامدهای ناگوار زمین‌لرزه بکاهند، بهره ‌بگیریم.

2. سازمان‌های دولتی و غیردولتی ویژه‌ی مدیریت روی‌دادهای ناگهانی و کمک‌رسانی به وجود آوریم و توان مدیریت بحران را پیوسته افزایش دهیم.

3. رشته‌های تخصصی لرزه‌شناسی و مهندسی زمین‌لرزه و به‌ویژه آموزش مدیریت بحران را در دانشگاه‌ها به وجود آوریم و گسترش بدهیم.

4. از مهندسان شهرساز بخواهیم از جای گسل‌های فعال کشور آگاه شوند و از ساختن سازه‌های مهم ملی ماند سد، تونل، پل، نیروگاه، مرکز آموزشی، خوابگاه و شهر و شهرک در نزدیکی آن‌ها پرهیز کنند.

5. توانایی مهندسان ناظر شهرداری‌ها را در نظارت بر ساختن بناها بر اساس قانون و رعایت شاخص‌های ایمنی افزایش دهیم.

6. راه‌ها نظارت همیشگی بر کیفیت مصالح ساختمانی را به تولید‌کنندگان یادآور شویم و بیاموزیم.

7. آگاهی سرمایه‌گذاران خصوصی و دولتی را در بخش مسکن و عمران افزایش دهیم که برای اجرا کردن سازه‌های مهم، از مشاوران زمین‌شناس بهره‌گیرند تا سرمایه‌ی خود و ملت را هدر ندهند.

8. به مسوولان وزارت مسکن و شهرسازی یادآوری کنیم که امکانان مالی و فنی روستاییان و بخش زیادی از شهرنشینان بسیار محدود است و آنان به تنهایی نمی‌توانند به بازسازی و مقاوم‌سازی مسکن خود بپردازند و به کمک نیاز دارند.

9. از نمایندگان مردم در مجلس خواست برای وضع قانون‌ و اختصاص دادن بودجه برای این کار مهم، پشتکار و سرعت هزینه کنند و برای آنان که قانون را برنمی‌تابند، جریمه و مجازات مناسب در نظر بگیرند.

10. به سازمان مدیریت و برنامه‌ریزی یاداوری کرد، هزینه‌ی پیش‌گیری از زیان، از هزینه‌ی بازسازی بسیار کم‌تر است. البته، غم از دست دادن عزیزان هم وجود دارد که اهمیت اختصاص دادن بودجه به این کار را صدچندان می‌کند.

11. به کمیته‌ی کاهش بلایای طبیعی و حوادث غیرمترقبه و ستادهای بحران یادآوری کرد که داشتن آمادگی و فراهم کردن امکانان نجات، از جمله جرثقیل، لودر، سگ، و دستگاه‌های زنده‌یاب، ژنراتور و بال‌گرد، از نیازهای رویارویی کارآمد با رویدادهایی این چنین است.

12. به مدیران بحران آموخت و یادآوری کرد که هماهنگی در کار کمک‌رسانی، در ساعت‌های آغازین روی‌داد، بسیار مهم و کارساز است و گرنه نوشدارو پس از مرگ سهراب می‌شود.

13. به شهرداران شهرها و منطقه ها آموخت و یادآوری کرد که زمین باز و مسطح در هر محله، نسبت به تراکم جمعیت، هنگام خطر می‌تواند بسیار چاره‌ساز باشد.

14. به سازمان‌ها و وزارت‌خانه‌هایی ماند انرژی هسته‌ای و صنعت و معدن هشدار داد، آزاد شدن مواد رادیواکتیو و مواد شیمیایی و سمی و آتش‌زا، بلایی بالاتر از زمین‌لرزه در پی خواهد داشت. مرکزهای که با این مواد کار دارند، باید به بیرون از منطقه‌های مسکونی جابه‌جا شوند.

15. به نیروی انتظامی یادآوری کرد، نظم رفت و آمد و برقراری امنیت در منطقه‌های نزدیک فاجعه، کمک شایانی به امدادگران و آسیب‌دیدگان می‌کند.

16. به وزارت راه و ترابری یادآوری کرد، کیفیت و مقاومت راه‌ها، پل‌ها و برج‌های مراقبت پرواز، در کمک‌رسانی به آسیب‌دیدگان بسیار مهم است.

17. به مردم آموزش داد در برنامه‌های آموزش رویارویی با زمین‌لرزه شرکت کنند و از وظیفه‌ی خود پیش، هنگام و پس از زمین‌لرزه آگاه شوند و بر این آگاهی بیفزایند.

18. به مسوولان و رسانه‌های عمومی آموخت و یادآوری کرد که در زمان کنونی پیش‌بینی زمان، مکان و اندازه‌ی انرژی آزاد شده در زمین‌لرزه‌ی بعدی، حتی در کشورهای پیشرفته، امکان‌پذیر نیست. پس با بیان درصد خرابی‌ها و تعداد کشته‌شدگان زمین‌لرزه‌ی بعدی، که نشانه‌ی ناآگاهی یا کم‌آگاهی از پدیده‌ی زمین‌لرزه است، به روحیه‌ی مردم آسیب نرسانند.

19. به معلمان اخلاق هشدار داد، برای برنامه‌ریزی و اجرای آن‌چه گفته شد، انسان‌های متعهد نیاز داریم. پس در شیوه‌ی آموزش و برنامه‌های اخلاقی خود بازنگری داشته باشند.

20. آن‌چه گفته شد را پیوسته یادآوری کنیم و برای به انجام رسیدن آن‌ها برنامه‌ریزی داشته باشیم.

 

۹۴/۱۱/۱۹
توحید ملک زاده دیلمقانی